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Trading Rules and Trading Volume 
 
 
 
 

ABSTRACT.  Investors who use fixed trading rules conditioned on stock characteristics must 

rebalance their portfolios regularly because characteristics fluctuate over time.  This paper presents 

evidence that such rule-driven rebalancing accounts for a substantial portion of trading volume in stock 

markets.  I develop a statistical model in which trading volume depends on fluctuations in stock 

characteristics and on the heterogeneity and persistence over time of investors’ trading rules.  To 

calibrate the model, I estimate these heterogeneity and persistence parameters from mutual fund 

holdings data.  Applied to observed changes in stock characteristics, the calibrated model suggests that 

rule-driven trading generates about 25% of NYSE/AMEX trading volume.  Panel regression results are 

consistent with the magnitudes obtained in the calibration:  Stocks for which rule-driven trading 

volume is predicted to be higher tend to have higher actual trading volume, controlling for other 

determinants of volume and using instrumental variables to account for the endogeneity of stock 

characteristics.  
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1. Introduction 

Why do financial market participants trade?  Turnover on the NYSE is currently running at 

about 100% per year.1  Trading volume in foreign exchange markets amounts to about $1.2 trillion per 

day.2  Yet, it is not well understood why investors undertake these trades.  Theoretically, there are a 

variety of potential explanations.  Information asymmetry might play a role, although it does not easily 

explain trade on its own.  As shown in Akerlof (1970) and Milgrom and Stokey (1982), rational 

uninformed agents would recognize the information advantage of informed traders, leading to a no-

trade situation.  Trading volume can arise, though, if market incompleteness forces some investors to 

trade in response to uninsured idiosyncratic shocks.  Such trade for hedging reasons would provide 

“noise” in the order flow that could sustain profitable trading on private information.3  Alternatively, 

investors might trade because they “agree to disagree” and interpret information differently.4  It seems 

plausible that some of the observed trading activity is indeed driven by these motives, but it is difficult 

to establish how much.  Trading volume could be zero in complete markets and infinity in incomplete 

markets with zero transaction costs and continuous information flow.5  

There is yet little empirical evidence that one could bring to bear on this question.  Recent 

work has uncovered some of the determinants of investors’ propensity to trade—for example, Grinblatt 

et al. (1995), Grinblatt and Keloharju (2001), Cohen et al. (2002), and Sias (2002) show that investors’ 

decisions to trade are related to past returns, and tax considerations, cash-flow news, and herding; 

Barber and Odean (2001) and Glaser and Weber (2003) link individual trading decisions to 

overconfidence—but these findings do not allow a quantitative assessment of how much different 

trading motives contribute to observed trading volume.   

                                                 
1 Defined as the number of shares traded over the number of shares outstanding. 
2 See Bank of International Settlements (2002).  For comparison, annual U.S. GDP is about $10 trillion in 2002.  
3 See, e.g., Grossman and Stiglitz (1980), Kyle (1985), Wang (1994), and He and Wang (1995).  Dow and Gorton 
(1997) argue that noise trading might arise because portfolio managers churn their portfolios to appear skilled to 
their principals.  Brunnermeier (2001) provides a more complete survey of the theoretical literature on trading 
volume. 
4 Harrison and Kreps (1978), Varian (1989), Harris and Raviv (1993), Kandel and Pearson (1995), Odean (1998), 
and Scheinkman and Xiong (2003) are models in which investors trade because of differences in beliefs.  
5 See Lo, Mamaysky, and Wang (2001) for a calibration of a model with fixed transaction costs.  
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In this paper, I also study micro-level trading patterns, but I do so in a novel framework that 

allows judging their effect on trading volume.  Specifically, I explore empirically the role of trading 

rules in generating trade in stock markets.  Trading rules are defined as a fixed mapping from a set of 

publicly observable asset characteristics—e.g., historical price patterns, accounting ratios, or analyst 

forecasts—into buy and sell decisions.  The following strategy, described by a mutual fund manager, 

would fit this definition well:  

 “First we start out with a universe of 9,700 to 9,800 stocks, then narrow our 
focus to companies with a market cap minimum of $172 million. Then we screen for 
stocks that have price-to-sales ratios of below 1.5 […], whose annual earnings are 
higher now than in the previous year […], companies that have positive relative 
strength in their share price over the past three, six and 12 months. […] Most of the 
time it’s all new faces when we rebalance.” 6 

The link to trading volume is as follows.  When investors use such fixed strategies to form their 

portfolios, trading needs arise—as mentioned by the fund manager above—because assets change their 

characteristics over time, forcing investors to replace assets whose characteristics no longer fit.  This 

trading activity is neither driven by liquidity shocks, nor induced by private information.  My goal in 

this paper is to estimate empirically how much trading volume is caused in this way.  The basic insight 

that my analysis builds on is that if investors follow trading rules, stocks with more pronounced 

changes in characteristics should experience larger trading volume.  

Trading rules seem to be ubiquitous in financial markets and can come in different disguises.  

One can distinguish two broad classes: Trading rules that arise from delegated portfolio management, 

and trading rules that serve as forecasting heuristics.  Trading rules in the first category are often 

referred to as investment styles.  Pension funds, mutual funds, and hedge funds tend to focus their 

investments on assets with certain common attributes, e.g. small-cap or growth stocks, as documented 

in Brown and Goetzmann (1997), Fung and Hsieh (1997), Chan et al. (2002) and Wermers (2002).  

Theoretically, these styles could address heterogeneous hedging needs in the investor population, as in 

                                                 
6 From an interview with Neil J. Hennessy, manager of the Hennessy Cornerstone Growth Fund on 
www.fundemail.com, April 24, 2002. 
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Lo and Wang (2001b) and Mamaysky and Spiegel (2002), but it is perhaps more plausible that product 

differentiation and agency problems play an important role.  For example, differentiation in styles 

could be a way for funds to cater to those retail investors that happen to believe in the superiority of 

certain investment styles [Massa (2000), Gabaix and Laibson (2003)].  Barberis and Shleifer (2003) 

suggest that styles may simplify asset allocation decisions and facilitate the performance evaluation of 

money managers.   

Trading rules in the second category—forecasting heuristics—include technical analysis and 

quantitative trading strategies, for example.  These strategies commonly involve buying and selling 

conditional on some fixed set of statistical patterns [see, e.g., Lo and Wang 2001a].  A simple example 

is momentum investing, which calls for buying stocks that recently outperformed the market.  Other 

technical trading rules may be more complex, but they are nonetheless driven by the same basic 

principle that trading decisions are deterministically linked to some historical price patterns.  Also, 

traders with a more fundamentally oriented approach might use fixed rules of thumb based on 

valuation ratios or growth rate forecasts.  One can view these trading rules as heuristics that investors 

use to form opinions about future stock returns based on public information.  Faced with limited 

information processing capacity, they might use simple models, conditioned on a limited number of 

variables and reevaluated only infrequently, perhaps along the lines of Mullainathan (2002) and Hong 

and Stein (2003).  With data snooping, and heterogeneity in modeling techniques, horizons, and 

sophistication, it seems plausible that different investors could come up with different models, leading 

to heterogeneity in trading rules.   

To assess how prevalent rule-driven trading is, and how much trading volume it generates, I 

begin by setting up a statistical model that captures two central aspects of rule-driven trading.  First, 

investors form portfolios focused on stocks with certain characteristics.  The flipside of this focus is 

that there is cross-investor dispersion in the average characteristics of their portfolios, which I refer to 

as location dispersion.  The narrower investors’ focus, the greater must be the location dispersion.  

Second, when stock characteristics change over time, rule-bound investors trade back to their previous 
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portfolio composition.  Therefore, if many investors follow trading rules, the average investor exhibits 

high location persistence.  Calibrated with estimates for location dispersion and persistence, the model 

predicts how much rule-driven trading volume should arise from a given change in a stock’s 

characteristics—the higher location dispersion and persistence, the higher the trading volume.  The 

model can accommodate multiple characteristics, taking into account their correlation.   

A key feature of the model is that the location dispersion and persistence parameters can be 

estimated from investor portfolio holdings data.  This allows me to calibrate the model without fitting 

free parameters to match trading volume statistics.  Its trading volume predictions can thus be 

subjected to empirical tests.  To obtain estimates for location dispersion and persistence, I use data on 

mutual fund holdings.  Since there is only little evidence in the prior literature as to the stock attributes 

that play important roles in trading rules, I use a broad range of stock characteristics, including price 

momentum, valuation ratios, growth forecasts, profitability, risk measures, firm size, and others.   

The first important result is that mutual funds exhibit considerable location dispersion with 

respect to many of these characteristics.  It is most pronounced for forecasted earnings growth, 

dividend yield, size, and leverage.  Furthermore, I find that many mutual funds tend to keep the 

location of their portfolio fixed over time, i.e. there is location persistence.  To give a specific example, 

some mutual funds focus on high growth stocks and others on low growth stocks, and many undertake 

trades to maintain their particular growth focus over time.  Under some assumptions, the estimate for 

this location persistence can be interpreted as the fraction of investors who follow fixed trading rules.  

During the sample period 1984 to 2000, this proportion fluctuates between 30% and 50%.   

Based on these estimates for location dispersion and persistence, and using the observed 

changes in stock characteristics at annual frequency, the calibrated model suggests that rule-driven 

trading accounts for a total turnover of about 18% per year for NYSE/AMEX stocks from 1984 to 

2001, which is roughly 25% of the actual trading volume during this period.  Interestingly, it seems 

that momentum characteristics have the greatest impact on rule-driven trading volume, despite only 

moderate location dispersion, because they are highly volatile—much more so than firm size, for 
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example.  This is a hint that a significant part of rule-driven trading might arise from technical trading 

rules.  Many technical characteristics are likely to be correlated with price momentum.  For example, a 

stock that switches from being a loser to being a winner is also likely to break through trendlines and 

experience changes in other technical indicators.  

Implicitly, the calibration assumes that mutual funds’ trading rules are approximately 

representative for the trading rules prevailing in the general investor population.  Therefore, to check 

the calibration results, I run cross-sectional regressions with a panel of NYSE/AMEX stocks.  

Consistent with the model, the results show that one percent higher predicted rule-driven turnover, 

based on each stock’s observed change in characteristics over annual observation intervals, leads to 

approximately one percent higher actual turnover.  In these regressions, I employ instrumental 

variables to address the fact that changes in many stock characteristics are endogenous, and that other 

unobservable determinants of trading volume—such as information flow, for example—might be 

correlated with changes in stock characteristics.  Overall, the quantitative predictions of the calibrated 

model are borne out in the data.  

In summary, my results suggest that the use of trading rules is widespread.  Rule-based trading 

is not induced by liquidity needs or private information, but it appears to account for a substantial 

portion of trading volume in the stock market.  To be clear, it is important to note that my rule-driven 

trading volume estimates capture only the trades that are undertaken to maintain a portfolio consistent 

with a fixed rule, but not the trades that result from switching of rules.  Rule-switching, either at the 

level of institutional investors’ clients, as in Barberis and Shleifer (2003), or by investors themselves 

could certainly lead to additional trading volume.  However, unlike fixed rule trades, which have a 

clear and tractable relation to changes in stock characteristics, it is less transparent what might drive 

investors’ decisions to switch rules.  Hence my focus on fixed trading rules.  

The rest of the paper is organized as follows.  Section 2 presents the statistical model.  In 

Section 3, I calibrate the model using mutual fund portfolio holdings data.  Section 4 presents the 

empirical tests using a panel of NYSE and AMEX stocks.  Section 5 concludes. 
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2. The Relationship Between Trading Rules and Trading Volume 

Suppose that some investors follow trading rules.  When stock characteristics change, these 

investors trade to maintain portfolios consistent with their trading rule.  How much trading volume 

would that generate for the typical stock?  The statistical model that I develop in this section provides 

the necessary structure to answer this question.  With this structure in place, one can describe 

investors’ portfolio holdings along many characteristics dimensions with a relatively small number of 

estimable parameters, and the link between trading rules and trading volume can be made explicit.  To 

focus on the essential aspects, the model abstracts from issues of pricing and from investors’ deeper 

motivations for following trading rules.  For the purposes of quantifying rule-driven trading volume, it 

suffices to describe in statistical terms how stocks are distributed across investor portfolios, and how 

this distribution evolves over time.  As long this statistical description is correct, my trading volume 

results must hold.  

 

2.1 Assets, characteristics, and trading rules  

The model is set in discrete time, t = 0, 1, …, T.  There is a continuum of stocks, indexed by  

i ∈  , and with total mass (market capitalization) normalized to one.  Each stock i is endowed with a 

vector itKit ccc ]...[ 1 ′≡  of K time-varying characteristics, e.g. dividend yield, past returns, profitability, 

etc.  For each stock i, cit follows a mean-zero mean-reverting stochastic process (e.g., a stationary 

vector autoregressive process) that has reached a steady state such that the cross-sectional distribution 

is time-invariant and given by cit ~ N[0, Σc].  Thus, individual stocks’ characteristics change over time, 

but their cross-sectional distribution in the population of stocks, denoted fc(c), remains the same. 7  To 

follow the development of the model, it is helpful to think of cit as being just a scalar of one 

                                                 
7 It seems plausible that what matters most for investors’ choices is the value of cit relative to other stocks in the 
same time-period.  Accordingly, one can simply think of cit as representing standard normal scores rather than the 
absolute value of stock characteristics.  In this case, the time-invariance of the cross-sectional distribution holds 
by definition.  In the empirical analysis, all characteristics are transformed to obey a standard normal cross-
sectional distribution.  
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characteristic—say, profitability—and Σc (and the other covariance matrices that I define below) 

simply as variances, although all results apply for multivariate cit. 

There exists further a continuum of investors, also with total mass (capital) equal to one, and 

indexed by j ∈  , holding the entire supply of stocks.  Trading rules, as defined in this paper, have 

two properties.  First, they involve some focus on stocks with certain characteristics, and second, these 

characteristics preferences are fixed over time.  To capture the first property in a tractable way, I 

assume that the distribution of stock characteristics within investor j’s portfolio is normal with mean 

mjt and covariance Ωc.  I refer to mjt as the location of investor j’s portfolio and to Ωc as the within-

portfolio dispersion.8  Taking the profitability example, the trading rule might prescribe a narrow focus 

on stocks with high profits, but allowing for some variation (Ωc) around a target for profitability (mjt).  

With respect to the second property, it would be unrealistic to assume that all investors in the stock 

market always follow a fixed trading rule.  Instead, I assume that with probability γ, investor j sticks to 

her location from the previous period, with probability (1-γ) she chooses a new one.  I refer to γ as the 

location persistence.  The following analysis focuses on trading volume only among the set of 

investors with fixed rules—that is, those who target mjt = mjt-1.  Therefore, until we get to the empirical 

work, it is not necessary to be more specific on how the other investors choose mjt.  In summary: 

Assumption: Investor j chooses stocks i such that cijt ~ N[mjt, Ωc].  With probability γ investor j 

chooses mjt = mjt-1. 

Note, however, that in my empirical work below, I estimate the parameters Ωc and γ from portfolio 

holdings data.  At this point, I do not mean to suggest a priori that their magnitude should be large or 

small.  The only critical components of the assumption are normality and homoskedasticity (identical 

Ωc for all investors), which permit to aggregate across investors in a tractable fashion.  Of course, 

investors’ portfolios might be more heterogeneous in reality.  It seems plausible that some investors 
                                                 
8 Note, though, that Ωc is a covariance matrix, not a scalar, but for ease of reference, I often simply refer to it as 
“dispersion” or “variance”.  
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might seek a portfolio focused on one characteristic, say, momentum, and neglecting others, while 

other investors might neglect momentum and focus on valuation ratios, for example.  But even so, my 

simplified setting could still provide a useful approximation.  For example, even if investors differ in 

their within-portfolio dispersion, the within-portfolio distribution of the average investor—while not 

exactly normal—might still be well approximated by a normal distribution, unless the difference in 

within-portfolio dispersions is too large.  It is the within-portfolio distribution of the average investor 

with given mj that drives the model’s predictions.  Similarly, it is possible that individual investors 

form portfolios that are non-normal, e.g. uniform with different variances, while the portfolio of the 

average investor is still approximately normal.  Ultimately, it will be left to the empirical tests later in 

the paper to determine whether the model approximates investors’ portfolios well enough to produce 

useful predictions.  

These few assumptions about investors’ investment policies are all that is needed to derive 

trading volume implications.  For this purpose, it is useful to analyze the joint density function f(m, c), 

which describes how the mass of market equity is distributed across stocks—distinguished by ci—and 

across investors—distinguished by mj.  Too see how it can be constructed, note that the marginal 

distribution fc(c) is given exogenously.  Next, based on the above assumption, we also know the 

conditional distribution f(c|m).  It is simply the distribution of cit within the portfolio of an investor j 

with mjt = m, that is, c|m ~ N[m, Ωc].  Finally, the remaining marginal distribution fm(m), which 

describes the distribution of mjt across investors, is pinned down by the market clearing condition:  The 

density of stocks with characteristics c demanded by investors in aggregate must always equal the 

density fc(c) in the stock supply.  Appendix A shows that this implies 

 mjt ~ N[0, Σm], where Σm = Σc - Ωc
9

  . (1) 

                                                 
9 This also implies that mjt obeys the same distribution for investors that stick to their old trading rules and those 
investors that choose a new mjt.  Among the first group mjt ~ N[0, Σm], hence the same distribution also has to 
apply to the second group, irrespective of the stochastic nature of their new choice, as it has to be mjt ~ N[0, Σm] 
in aggregate, too.  
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The intuition behind this result is most easily seen when there is only one stock characteristic. For 

example, if investors aim for portfolios with low Ωc (e.g., narrowly focused on stocks with similar 

profitability), then location dispersion Σm must be high (i.e., some investors must focus on low 

profitability and some on high profitability stocks), otherwise the market would not clear.  Note that 

this must be true under very general conditions.  It does not depend on how prices are set, or on the 

deeper motivations that lead investors to follow trading rules.  If investors hold focused portfolios—

whatever the reason for it—there has to be dispersion in their portfolio location for the market to clear.  

Since fm(m) and f(c|m) are multivariate normal, f(m, c) = f(c|m)fm(m) is multivariate normal, too 

(see Appendix B for its parameters).  To illustrate, Figure 1 presents two examples of f(m, c) for the 

single characteristic case.  For concreteness, let c be profitability, as before.  In both graphs, Σc = 1.  

Panel A depicts a situation in which investors aim for narrowly focused portfolios (low Ωc).  Loosely 

speaking, investor j’s portfolio, f(c| mj), can be thought of as a “cut” through f(m, c) parallel to the c-

axis at m = mj.  For example, investors with mj = -1 hold stocks with c mostly between 0 and –2, i.e. 

low profitability.  The investors at the opposite end with mj = 1 are invested in high profitability stocks.  

As can be seen, the low within-portfolio dispersion is associated with high location dispersion between 

 Figure 1 
Surface plots of the joint distribution of stock characteristics and portfolio locations. Examples 
with high (Panel A) and low (Panel B) location dispersion. 
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investors (high Σm).  In contrast, in Panel B, investors hold portfolios that are more diversified with 

respect to c (high Ωc).  As a result, there is only little dispersion in mj across investors (low Σm)—their 

portfolios are almost identical in terms of their characteristics composition.   

 

2.2 Changes in characteristics and trading volume 

The shape of f(m, c) is time-invariant.  Individual stocks change their characteristics, and a 

fraction (1-γ) of all investors change their portfolio location each period, but the overall distribution 

remains unchanged.  Based on f(m, c), we can now back out how much trading volume is caused each 

period by trading rules.  To see the effects most transparently, suppose for a moment that γ = 1 and so 

every investor j has a constant portfolio location mj.  In that case, it is easy to see that if stock i’s 

characteristics change from cit to cit+1, its owner clientele must change, too.  Since investors have 

constant portfolio location, we can express these owner clienteles in terms of the owners’ mj—that is, 

the conditional distributions f(m | cit) and f(m | cit+1).  Figure 2 illustrates this point with an example, 

again for scalar c.  Put informally, the depicted distributions correspond to “cuts” parallel to the m-axis 

at c = cit and c = cit+1 through f(m, c) (recall Figure 1).  For example, when a stock has low profitability 

in t (low cit), most of its market equity is held by investors that aim for low profitability stocks (low 

 
 
Figure 2 
Trading volume in response to characteristics changes 
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mj).  If the stock’s profitability increases from t to t+1, its owner clientele shifts towards investors that 

aim for high profits.  Since investors’ portfolio locations are unchanged over time, this change in  

f(m| c) can only happen through trade.  The dark shaded area represents the fraction of the stock’s 

shares that is turned over from low to high mj investors.   

When γ < 1, the conditional distributions are the same as with γ = 1.  However, only a fraction 

γ of the investor population now maintains mjt+1 = mjt.   Since my focus in this paper is exclusively on 

the trading volume caused by fixed, deterministic trading rules, I count only the trades among investors 

with fixed mj as rule-driven trading volume.  Since they account for a fraction γ of the total mass of 

investors, this is simply the dark shaded area in Figure 2 times the location persistence parameter γ.  

The following definition states this more formally:  

Definition:  Rule-driven trading volume (turnover) of a stock experiencing a change in characteristics 

ititit ccc −≡∆ +1  is 

 ( ) ( ) mcmfcmf itit
Sm

it d|| 1+
∈

−≡ ∫γτ , (2) 

where ( ) ( ){ }1: +>≡ itit m|cfm|cfmS  

The integral in Eq. (2) is simply the continuous equivalent of the standard definition of turnover, 

summing shares sold across all investors, standardized by total shares outstanding.  

It is worth emphasizing that we do not need to know anything about trading costs and other 

frictions to quantify rule-driven trading volume here.  If we observe that investors have high location 

persistence (high γ), and that they hold focused portfolios and hence location dispersion is high (high 

Σm), this state is only sustainable if investors trade.  Otherwise, with mean-reverting characteristics, 

their portfolios would eventually converge to an identical characteristics distribution as ∞→t  and 

location dispersion would go to zero.  For the same reason, it does not matter that some 

characteristics—in particular those based on price, e.g. price/sales—might be endogenous with respect 
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to trading volume.  Eq. (2) is simply a consequence of market clearing and must hold even if trading 

itself influences characteristics.10  Integration of Eq. (2) leads to the following result (see Appendix C): 

Proposition:  In each period t, the rule-driven trading volume (turnover), τit, of stock i depends on its 

change in characteristics ∆cit as follows:  

( )( )2
1

2
12 −Φ= itit dγτ , (3) 

where  

itcmmmcitit ccd ∆ΣΣΩΣΣ′∆= −−− 111 , (4) 

and ( ).Φ  denotes the standard normal CDF and ]|[Var cmm ≡Ω . 

To see the intuition behind this result, note that dit is a distance measure. 11  A stock that travels 

∆cit through c-space is expected to travel along the vector itcmit cm ∆ΣΣ=∆ −1  through m-space, i.e. 

across investor portfolios ordered by their location m.  The length of this vector in m-space, 

standardized by Ωm, is given by dit.  The greater dit, the more pronounced is the change in the owner 

clientele induced by ∆cit, and hence the higher the trading volume.  Accordingly, τit is a monotone 

increasing (nonlinear) function of dit.  In short, the proposition provides a way to condense the trading 

volume implications of changes in characteristics along many (correlated) dimensions into one single 

number.  The essence of this result is that there should be more rule-driven trading volume when (i) 

investors have greater location dispersion (larger dit for a given ∆cit), (ii) their location persistence is 

higher (higher γ), and (iii), characteristics are more volatile (larger ∆cit).  The rest of the paper is 

devoted to quantifying and testing this relationship.  

                                                 
10 Yet, endogeneity does play an important role in empirical tests of the model predictions, as I explain in more 
detail in Section 4 of the paper.  
11 More precisely, dit is a Mahalanobis distance [see, e.g., Anderson (2003, p. 80)].  With diagonal Ωm and unit 
variances on its diagonal, dit would reduce to the familiar Euclidean distance.   
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3. Calibration 

Calibration of the model requires estimates for the covariance matrices Σc, Σm, Ωm, and the 

location persistence γ.  Given these estimates, one can use Eq. (3) to predict stock-by-stock how much 

rule-driven trading volume should result from a change in characteristics ∆cit.  Ideally, one would want 

to estimate these parameters from data on stock holdings of all market participants.  Of course, such 

data sets only exist for some subsets of the investor population.  I use data on mutual fund stock 

holdings, which are the most comprehensive portfolio level data currently available.  The calibration 

exercise is then conducted under the working assumption that mutual funds are approximately 

representative—in terms of their trading rules—for the general investor population.  However, the 

empirical tests that follow will reveal the accuracy of the predictions obtained in the calibration.   

 

3.1 Identification and estimation of calibration parameters 

All parameters are estimated cross-sectionally and are allowed to vary over time.  The 

covariance matrices Σmt and Σct are estimated within each quarter, using value-weights: 

( )( ) ittit

I

i
tit

t
ct scccc

s
′−−=Σ ∑

=1

1ˆ  (5) 

( )( ) jttjt

J

j
tjt

t
mt scmcm

s
′−−=Σ ∑

=1

1ˆ  , (6) 

where ijti itsjt scm
j ∑=

 
1  is fund j’s portfolio location, sijt is fund j’s investment in stock 

i, ∑=
  j ijtit ss  denotes the market capitalization of stock i, ∑=

  i ijtjt ss is the market value of 

investor j’s portfolio, ∑ ∑=
i j ijtt ss
 

 denotes the value of the market portfolio, and ∑=
i ititt scc
 

 is 

the value-weighted sample mean of characteristics across all stocks.  The estimator of Σmt is centered at 

tc  rather than tm  to take into account that mutual funds in aggregate may have some trading rules 

bias.  If the data covered the entire investor population, it would always be the case that tt cm = .  Eq. 
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(6) thus also incorporates the dispersion between mutual funds and other investor groups.  This is in 

analogy to the fact that if the population mean of mjt is known to be tc , the maximum likelihood 

estimator of the population covariance Σmt, using a sample (mutual funds in this case) with sample 

mean tt cm ≠ , is Eq. (6).  Finally, given the estimates for Σct and Σmt, and by imposing multivariate 

normality as in the model, we can estimate the conditional covariance mtΩ  as    

mtctmtmtmt ΣΣΣ−Σ=Ω − ˆˆˆˆˆ 1 . (7) 

The identification of the location persistence parameter γ is a bit more intricate.  To disentangle 

investors with fixed trading rules and those without, we need to be more specific about the trading 

patterns of those without rules.  It is useful to consider first the case of one stock characteristic.  Let us 

start by decomposing the location drift of investor j’s portfolio from t to t+1, i.e. 

( )∑
=

+++ −=−
I

i
itijtitijtjtjt cscsmm

1
111  , (8) 

into active (ALD) and passive location drift (PLD):12   
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PLDjt+1 denotes the change in mj that the investor would experience with a pure buy-and-hold policy: 

the portfolio weights change from sijt to 1
~

+ijts  merely because of price changes between t and t+1.  

ALDjt+1 refers to the change in mj that the investor achieves by trading from the buy-and-hold weights 

1
~

+ijts  to the actual weights sijt+1.  The key to estimating γ is that mjt+1 depends in different ways on its 

own lag and on lagged PLD for investors that follow trading rules and for those that do not.   

Consider first the investors with trading rules.  With continuous rebalancing, they would 

always keep their portfolio location equal to their time-invariant target, which shall be denoted xj, i.e 

mjt+1 = mjt = xj.  More realistically, though, investors might revise their portfolios less frequently and 

                                                 
12 This terminology borrows from Wermers (2002), who analyzes “style drift” of mutual fund portfolios.  
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their rebalancing dates need not coincide with the quarter-ends at which mjt is measured.  As a result, 

the observed mjt is only a noisy measure of xj, i.e. mjt = xj + εjt, with Cov(xj, εjt) = 0.  Therefore,  

mjt+1 = mjt – εjt + εjt+1.  As will become clear, for identification it is useful to project εjt onto PLDjt, i.e. 

εjt = s PLDjt + ηjt, which yields: 

mjt+1 = mjt + s PLDjt+1 – s PLDjt – ηjt + ηjt+1 . (10) 

Here, ηjt+1 is uncorrelated with all the other right hand side variables, but it is important to keep in 

mind that Cov(mjt, ηjt) > 0, because Cov(mjt, εjt) >0.  Furthermore, Cov(PLDjt+1, ηjt,) is likely to be 

nonzero, because ηjt is a component of mjt, and, with mean-reverting characteristics, PLDjt+1 is 

correlated with mjt.  Consider now investors without fixed trading rules.  When they choose new stocks 

for their portfolios, their choice of characteristics is not related to the portfolio location in the previous 

period.  Hence, the subportfolio of new stocks has random location ut+1 with Cov(ut+1, mt) = 0 and  

Cov(ut+1, PLDt+1) = 0.  However, it need not be the case that they turnover the entire portfolio.  The 

part they hold on to drifts passively towards mjt+1 = mt + PLDt+1.  On average therefore the following 

relationship holds:  

mjt+1 = π (mjt + PLDjt) + (1 - π) ujt , (11) 

where 0 < π < 1 depends on how strongly the investors turn over their portfolios. 

If the probability that investor j is of the first (fixed-rule) type is γ, and the probability for the 

second type is (1-γ), averaging across all investors yields the following mixture of Eqs. (10) and (11):  

mjt+1 = [γ + (1-γ) π] mjt + [s γ + π (1-γ)] PLDjt+1 – [s γ ] PLDjt + νjt+1 (12) 

Eq. (12) prescribes a cross-sectional regression that can be used to identify γ  (by subtracting the sum 

of the second and third coefficients from the first).  The intuition behind Eq. (12) is simply that the 

greater the fraction of investors with fixed rules, the stronger is the persistence in mjt, controlling for 

current and past passive location drift.  Yet, identification is complicated by the fact that the 

disturbance νt inherits the ηt terms from Eq. (10) and thus also the correlation with mjt and PLDt+1.  

Hence, OLS does not deliver consistent estimates of the coefficients in Eq. (12).  To identify γ, I use 
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mt-1 and ξt+1, the residual in the projection PLDjt+1 = r mjt + ξjt+1, as instruments in two-stage least 

squares (2SLS).  Both instruments are correlated with the regressors mjt and PLDt+1, and uncorrelated 

with the structural disturbance components ηt, ηt+1, and ut+1.  Hence, Eq. (12) is exactly identified. 

Within the framework of the model, the characteristics that feature in rule-bound investors’ 

trading rules should all have identical γ, while other characteristics that are neglected should have zero 

γ.  Of course, this might not be exactly true in reality, because some characteristics may be more 

popular among rule traders than others—an aspect that is not captured in the model.  As an 

approximation, I use cluster analysis to separate the initial list of candidate stock characteristics into 

two groups with high and low γ.  More specifically, I estimate Eq. (12) cross-sectionally by 2SLS for 

each characteristic and quarter, take the time-series average these estimates, and feed these sample 

period averages into a 2-means clustering algorithm.  This algorithm allocates characteristics to the two 

groups such that the average squared deviation from the mean within each group is minimized.  I then 

use only the characteristics in the high-γ cluster to calibrate the model.  The characteristics in the low-γ 

cluster are excluded from the analysis, which effectively amounts to assuming that their γ is zero.  

Among the high-γ characteristics, I take the cross-sectional average of their γ estimates in each quarter 

to arrive at a single estimate tγ̂  that can be used to calibrate the model.   

 

3.2 Data and summary statistics 

The parameters described in the previous section are estimated from mutual fund holdings data 

extracted from the Thomson Financial Mutual Funds (Spectrum) Database.  The database contains 

quarterly stock-by-stock positions of most U.S. mutual funds, and is explained is explained in great 

detail in Wermers (1999).  I match these quarterly holdings observations with data on stock 

characteristics from CRSP, COMPUSTAT and I/B/E/S.  In principle, one would want to select the 

stock characteristics that mutual funds use as a basis for their trading rules.  Yet, there is little guidance 

as to which characteristics this would be.  Existing empirical work by Brown and Goetzmann (1997), 
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Chan et al. (2002), and Wermers (2002) shows that mutual funds tend to cluster on firm size, measures 

related to growth or glamour (e.g., book-to-market) and momentum.  However, an exhaustive search 

has not yet been conducted in the literature.  For this reason, I consider a wide range of characteristics 

and let the data speak as to their relevance for mutual funds’ trading rules.   

My initial list of candidate characteristics is drawn up based on the following principles.  First, 

they should be plausibly related to firm value or risk, motivated by the conjecture that investors might 

most likely condition their trading rules on such characteristics.  Second, to be consistent with my 

model, the characteristics should be continuous variables.  This rules out discrete variables such as 

analyst recommendations or index membership.  Third, the characteristics should have sufficient time-

variation.  Only relatively volatile characteristics are likely to be sources of rule-driven trading volume.  

For example, while it might seem plausible that some investors select firms based on R&D expenses, 

most firms have quite persistent ratios of R&D expenses to sales, making it an unlikely candidate to 

explain trading volume.  The same is true for many other accounting variables. 

Based on this reasoning, I select the following characteristics: Momentum (Ret12: past 12-

month returns; Ret3: past 3-month returns; Mav12: price minus 12-month moving average price), 

glamour characteristics (Ret36: 36-month return; S/M: log of sales/market equity13), profitability 

measures (E/S: earnings/sales; E/A: earnings/assets), leverage (L/A: liabilities/assets; L/M: 

liabilities/market equity), firm liquidity (CF/L: cash flow/liabilities; C/CL: cash and short-term 

investments/current liabilities), growth (FutGr: I/B/E/S long term growth rate forecast; EGr: one-year 

change in earnings/assets; SGr: one-year change in sales/assets), yield (DY: dividend yield), risk 

measures (Beta: past 36-month beta on the value-weighted CRSP index; Volat: one-year variance of 

daily returns), and firm size (Size: market capitalization). 

In the end, any selection of characteristics has to involve some arbitrary element, but the 

results are not very sensitive to the exact definition of the characteristics set.  First, the distance 

                                                 
13 I use sales/price and not book-to-market to avoid having to eliminate observations with negative book values. 
Towards the end of the 1990s there is a fairly large number of firms with negative book values.  
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measure in Eq. (4) does not change much if one adds additional characteristics that are highly 

correlated with linear combinations of the existing ones.  It seems hard to think of other variables that 

might not be highly correlated with the existing ones.  Second, data mining is not an issue here.  

Adding a variable to the set of characteristics would only produce a higher rule-driven trading volume 

estimate if mutual funds during the sample period were dispersed in their preferences for this 

characteristic (high Σm), and if they traded to offset location drift with respect to this characteristic 

(high γ)—that is, if many funds indeed followed trading rules based on this characteristic.   

Since the model in Section 2 is based on normally distributed characteristics, I transform all 

variables to standard normal scores in each quarter.  This is consistent with the idea that investors are 

likely to select stocks based on the relative level rather than the absolute level of characteristics.  More 

precisely, because all statistics in the calibration are value-weighted, I force the characteristics to obey 

a standard normal distribution in value-weighted terms.  Since I/B/E/S long-term growth forecasts are 

not available before 1982 and a lag of two years is required to compute the variables in Eq. (12), the 

sample period starts in the first quarter of 1984.  It ends in the fourth quarter of 2000.  The sample only 

includes NYSE and AMEX stocks, because Nasdaq trading volume figures include interdealer trading, 

which makes them incompatible with those from NYSE and AMEX [see Atkins and Dyl (1997)].14  

Finally, in any given quarter, I include only stocks that have a valid observation for each of the 18 

candidate characteristics.   

Changes in characteristics (∆cit) and passive location drift (PLDjt) are calculated each quarter 

over overlapping annual intervals.  There are two reasons for this choice of interval: First, many of the 

stock characteristics are based on accounting data that change only once per year.  For these 

characteristics, shorter observation intervals would not make much sense.  Second, while most of the 

mutual fund holdings data is updated each quarter, the data for some funds are reported at semi-annual 

or even annual frequency only [see, also, Wermers (1999)].  Using annual intervals thus avoids many 

                                                 
14 In principle, one could also estimate the calibration parameters including the data on Nasdaq stocks, and then 
focus on NYSE/AMEX stocks in the empirical tests.  This leads to similar results.   
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complications arising from stale holdings information.  To be consistent with the annual measurement 

interval for ∆cit, I average the quarterly tγ̂ , mΣ̂  and cΣ̂  estimates over the four quarters 

contemporaneous with ∆cit.  

Table 1 shows some summary statistics for the sample of stocks and mutual funds used in this 

study.  The statistics reported in this table are time-averaged cross-sectional estimates.  All statistics, 

percentiles as well as correlations, are calculated using value-weighting, using stock or fund market 

capitalization as weights.  As shown in the bottom line, the data requirements leave, on average, 866 

stocks in the sample, which is about 42% of the number of NYSE/AMEX stocks on CRSP.  Since 

these stocks tend to be large stocks, they account for 69% of NYSE/AMEX market capitalization.  The 

average number of mutual funds in the Thomson Financial database that hold at least one of these 

stocks with valid data is 1695, and the median fund holds about 56 NYSE/AMEX stocks, while the 

mean is 84. 

Univariate summary statistics for cit would of course be inherently uninteresting, because all 

characteristics are transformed to standard normal scores.  However, statistics on the distribution of 

portfolio location (mjt) are a useful diagnostic.  The calibration uses a joint normality assumption, so it 

would be helpful if the distribution of mjt were at least approximately normal.  Also, it would be 

interesting to know whether mutual funds in aggregate have strong preferences for certain 

characteristics.  As the first block of rows shows, the mean and median fund seems to have some 

preference for stocks with low profitability (E/S, E/A), high forecasted growth (FutGr), low dividend 

yield (DY), high risk (Beta and Volat), and smaller Size.  Yet, relative to the cross-sectional standard 

deviation of cit, which is equal to one, the means and medians are still relatively close to zero.  The 5th 

and 95th percentile values show that the cross-sectional distribution of mjt is reasonably symmetric for 

most characteristics, except perhaps for Volat and Size which exhibit considerable skewness.  Overall, 

there is reason to expect that the normality assumption for mjt should provide an adequate 

approximation.  
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Table 1 
Summary statistics on standardized stock characteristics and mutual funds’ portfolio locations 
This table shows summary statistics using stocks that have a valid observation on each of the 18 candidate characteristics in a given quarter.  The sample period runs 
from the first quarter of 1984 to the last quarter of 2000.  Medians, percentiles, and correlations are calculated cross-sectionally each quarter, using value-weights, 
and are then averaged over time.  For stock characteristics (cit), the unit of observation is a stock.  For portfolio location (mjt), the unit of observation is a fund, and 
mjt refers to the fund j’s vector of mean characteristics, computed by value-weighting (using portfolio weights) the cit vectors of all stocks in funds j’s portfolio.  The 
first block of rows shows statistics on the cross-sectional distribution of mjt.  The second block shows the sample correlation matrices for the elements of cit (upper 
triangular part) and mjt (lower triangular part) that correspond to the sample estimates of Σc and Σm, which are defined in Section 3.1. of the text.  

                   

  Ret12 Ret3 Mav12 Ret36 S/M E/S E/A L/A L/M CF/L C/CL FutGr EGr SGr DY Beta Volat Size 
                   

 portfolio location (mj)  
Mean 0.04 0.02 0.04 0.01 0.07 -0.11 -0.12 0.01 0.06 -0.09 0.03 0.09 0.00 0.03 -0.13 0.16 0.17 -0.22
Median 0.01 0.02 0.02 -0.01 0.07 -0.09 -0.11 0.04 0.06 -0.08 0.00 0.07 0.01 0.03 -0.14 0.15 0.14 -0.13
5th pct. -0.57 -0.47 -0.51 -0.71 -0.67 -0.67 -0.71 -0.60 -0.75 -0.65 -0.41 -0.80 -0.46 -0.32 -1.12 -0.47 -0.53 -1.13
95th pct. 0.74 0.53 0.67 0.83 0.83 0.37 0.44 0.50 0.91 0.46 0.56 1.05 0.41 0.39 0.89 0.78 0.98 0.34
                   

      -- correlation among elements of ci --   
Ret12  0.50 0.82 0.57 -0.26 0.00 0.02 0.04 -0.22 -0.01 0.04 0.14 0.01 0.05 -0.11 0.04 0.03 0.16
Ret3 0.55  0.74 0.28 -0.13 0.01 0.02 0.02 -0.11 0.00 0.01 0.04 0.01 0.02 -0.02 0.02 0.02 0.09
Mav12 0.88 0.75  0.63 -0.24 -0.01 0.03 0.02 -0.22 0.00 0.03 0.14 0.00 0.03 -0.14 0.05 0.04 0.12
Ret36 0.72 0.34 0.48  -0.39 0.16 0.23 0.01 -0.37 0.14 0.09 0.33 0.27 0.14 -0.23 0.11 0.08 0.22
S/M -0.46 -0.20 -0.42 -0.66  -0.64 -0.50 0.37 0.72 -0.48 -0.32 -0.44 -0.11 -0.04 0.26 -0.05 -0.01 -0.23
E/S 0.07 0.01 0.02 0.29 -0.59  0.74 -0.27 -0.38 0.63 0.23 0.06 0.40 0.05 0.10 -0.13 -0.23 0.24
E/A 0.19 0.08 0.18 0.46 -0.59 0.73  -0.47 -0.68 0.87 0.30 0.31 0.51 0.08 -0.13 0.01 -0.07 0.21
L/A -0.15 -0.04 -0.17 -0.25 0.54 -0.23 -0.49  0.71 -0.72 -0.47 -0.29 -0.06 -0.03 0.23 -0.05 -0.10 0.13
L/M -0.46 -0.20 -0.45 -0.66 0.86 -0.37 -0.70 0.75  -0.73 -0.43 -0.62 -0.18 -0.08 0.44 -0.15 -0.17 -0.11
CF/L 0.18 0.06 0.18 0.40 -0.61 0.60 0.89 -0.75 -0.78  0.40 0.28 0.40 0.10 -0.14 0.00 -0.02 0.15
C/CL 0.25 0.10 0.26 0.39 -0.51 0.14 0.40 -0.68 -0.67 0.57  0.27 0.09 0.03 -0.23 0.08 0.15 -0.02
FutGr 0.41 0.16 0.41 0.60 -0.64 0.03 0.45 -0.61 -0.85 0.55 0.66  0.11 0.04 -0.75 0.45 0.48 -0.01
EGr 0.11 0.03 0.08 0.38 -0.18 0.38 0.52 -0.12 -0.24 0.43 0.17 0.21  0.33 -0.06 0.03 -0.02 0.06
SGr 0.11 0.07 0.09 0.16 -0.05 0.03 0.06 0.02 -0.06 0.06 0.00 0.06 0.38  0.01 -0.03 -0.01 0.02
DY -0.35 -0.13 -0.37 -0.48 0.46 0.16 -0.24 0.55 0.68 -0.38 -0.65 -0.91 -0.16 -0.04  -0.48 -0.58 0.20
Beta 0.23 0.09 0.24 0.33 -0.21 -0.26 0.15 -0.33 -0.45 0.24 0.47 0.71 0.14 -0.01 -0.76  0.51 -0.11
Volat 0.24 0.09 0.26 0.31 -0.22 -0.37 0.00 -0.38 -0.45 0.16 0.56 0.74 0.08 0.02 -0.86 0.79  -0.31
Size 0.13 0.08 0.08 0.19 -0.23 0.40 0.36 0.19 -0.11 0.21 -0.11 -0.12 0.07 0.00 0.32 -0.18 -0.42  
  -- correlation among elements of mj --       
                   

#stocks: 866   #stocks per fund: mean 84            
#funds: 1695     median 56            
                                      

      
 

20 



 21

The matrix in the second block shows cross-sectional correlation estimates for ci (upper 

triangular part) and for mj (lower triangular part).  These correlation matrices are derived from ctΣ̂  and 

mtΣ̂ , respectively, and are then averaged over time.  If mutual funds held all stocks in the market, and 

absent estimation issues, both correlation matrices, since value-weighted, would have to be identical.  

As the table shows, most of the estimated correlations for ci and mj are similar.  It is also apparent that 

many characteristics are highly correlated.  For example, not surprisingly, Ret12 and Ret36 are 

positively correlated (0.57).  Perhaps more interestingly, DY and FutGr have strong negative 

correlation (-0.75).  Many of the other correlations have magnitudes around 0.50 or –0.50.  This 

highlights the importance of accounting appropriately for correlation among stock characteristics in the 

derivation of rule-driven trading volume in Section 2.   

 

3.3 Determining the set of relevant characteristics 

As the first step to calibrate the model, I determine which characteristics play a relevant role in 

investors’ trading rules in the sense that many investors choose to keep constant their portfolio location 

with respect to this characteristic.  Following the clustering algorithm described in section 3.1, I form 

two groups of characteristics with low and high estimates for location persistence γ, respectively.  As it 

turns out, the results are clear-cut.  The low-γ cluster contains three characteristics: Ret3, EGr, and 

SGr, with γ-estimates of 0.16, 0.10, and 0.04, respectively.  The γ-estimates for the other characteristics 

in the high-γ cluster are all much higher and lie between 0.30 and 0.50, as I show in more detail below.  

Evidently, only few investors follow fixed trading rules based on Ret3, EGr, and SGr, and changes in 

these characteristics are therefore unlikely to produce much rule-driven trading volume.  Hence, for the 

rest of the paper, I work only with the characteristics in the high-γ cluster.   
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3.4 Unidimensional calibration results 

To provide some insight as to the characteristics that feature most prominently in investors’ 

trading rules, I start with a unidimensional calibration exercise, calibrating the model one characteristic 

at a time.  In interpreting these univariate findings it is important, though, to keep in mind that 

characteristics are correlated, and thus the results may partly reflect commonality across 

characteristics.   

Table 2 presents estimates of the calibration parameters.  Recall that according to the model 

developed in Section 2, the amount of rule-driven trading volume is related positively location 

dispersion (Σm), location persistence (γ), and the magnitude of characteristics changes (|∆cit|) (All 

characteristics are transformed to standard normal scores, so Σc is simply equal to one).  Since we 

examine one characteristic at a time here, all parameters are scalars.  They are estimated quarter-by-

quarter, and the table shows their time-series averages, along with the associated autocorrelation-

consistent standard error in parentheses.  The first column presents estimates for σm, the square root of 

Σm. To judge the magnitudes, it is useful to compare them to the dispersion that one would expect if 

funds did not have any intention to construct a focused portfolio.  In this case, any variation in mjt 

would just be a product of chance, and σm would be equal to the standard error of the mean of c in a 

randomly sampled portfolio.  For the median fund with 55 stocks, this standard error would be about 

0.14, assuming that stocks have identical value-weights.  As the table shows, the observed location 

dispersion between funds is much higher.  Funds exhibit particularly strong dispersion with respect to 

FutGr (0.58), DY (0.60), and Size (0.49). Volat, L/M, Ret36 and S/M also exihibit large values for Σm.  

There is less location dispersion for the firm liquidity variables and for profitability and for most of the 

purely accounting-based variables like E/S or CF/L.  The standard errors of mσ̂  are generally small, at 

most 0.02.  Evidently, location dispersion among mutual funds tends to be quite stable over time.  
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Table 2 
Unidimensional calibration parameters and results 
Each quarter, I calculate the portfolio location (mjt) for each mutual fund, and I estimate the value-weighted 
standard deviation (σmt) of mjt between funds (the square root of Σmt), as described in Section 3.1, but 
separately for each characteristic.  The location persistence (γt) is calculated by running cross-sectional 2SLS 
regressions across funds of mjt+1 on mjt and passive location drift, as described in Section 3.1.  Characteristics 
volatility is measured each quarter by taking the value-weighted mean of the absolute values of ∆cit over 
(overlapping) annual intervals across all stocks in the sample.  Predicted rule-driven turnover is calculated for 
each stock in each quarter according to Eq. (4), using the estimates of Σmt, Ωmt and γt, and the observed ∆cit
over overlapping annual intervals.  The individual predicted turnover figures are then aggregated across 
stocks, weighted by market capitalization.  The table shows the time-series average of these statistics, along 
with Newey-West autocorrelation-consistent standard errors in parentheses.  The sample period runs from the 
first quarter of 1984 to the fourth quarter of 2000.  Only NYSE and AMEX stocks are used. 
            

Stock characteristic 
Location Dispersion 

Between Funds 
Location 

persistence 
Characteristics 

Volatility 
Predicted Turnover 

(in %) 
  ( σm ) ( γ ) ( |∆cit| ) (τ ) 
      

Momentum Ret12 0.40 0.50 1.04 9.18 
  (0.01) (0.03) (0.01) (0.65) 
      

 Mav12 0.37 0.44 1.03 7.32 
  (0.01) (0.02) (0.01) (0.45) 
      

Glamour Ret36 0.47 0.32 0.63 4.41 
  (0.02) (0.04) (0.01) (0.75) 
      

 S/M 0.45 0.46 0.27 2.62 
  (0.01) (0.02) (0.01) (0.19) 
      

Profitability E/S 0.34 0.30 0.48 2.23 
  (0.01) (0.02) (0.02) (0.19) 
      

 E/A 0.36 0.33 0.50 2.85 
  (0.01) (0.04) (0.01) (0.34) 
      

Leverage L/A 0.34 0.41 0.28 1.63 
  (0.00) (0.03) (0.01) (0.10) 
      

 L/M 0.49 0.45 0.26 2.61 
  (0.01) (0.04) (0.01) (0.24) 
      

Firm Liquidity CF/L 0.34 0.37 0.44 2.45 
  (0.01) (0.03) (0.01) (0.26) 
      

 C/CL 0.30 0.39 0.40 2.02 
  (0.01) (0.02) (0.02) (0.17) 
      

Growth FutGr 0.58 0.47 0.27 3.66 
  (0.02) (0.02) (0.01) (0.25) 
      

Yield DY 0.60 0.47 0.26 3.89 
  (0.02) (0.02) (0.01) (0.14) 
      

Risk Beta 0.40 0.30 0.48 2.77 
  (0.02) (0.03) (0.04) (0.28) 
      

 Volat 0.48 0.37 0.53 4.62 
  (0.02) (0.03) (0.02) (0.30) 
      

Firm Size Size 0.49 0.49 0.16 2.02 
  (0.01) (0.04) (0.01) (0.24) 
            

      

 



 24

The second column presents estimates for the location persistence γ, obtained via the 

regression (12) with 2SLS.  These are the numbers that provided the input to the clustering algorithm 

that attributed the characteristics listed in the table to the high γ-group.  Recall that the higher the 

estimate for γ, the more likely it is that a given fund follows a fixed trading rule on this characteristic.  

The results show that γ̂  varies from 0.30 and 0.50.  About two thirds of the estimates are within two 

standard errors from the overall mean of 0.41.  Hence, the assumption that γ is constant across these 

characteristics, which is used in the multidimensional calibration below, is at least approximately in 

line with the data.  The standard errors are relatively small (between 0.02 and 0.04), and thus the 

results are not clouded much by noise.  Taken together, these estimates suggest that on average about 

40% of mutual funds stick to their trading rules in a given period.   

The third column gives an impression as to the typical magnitudes of |∆cit|.  It reveals 

substantial differences between characteristics.  The momentum characteristics Ret12 and Mav12 tend 

to be the most volatile characteristics, with mean |∆cit| of 1.04 and 1.03 per year, respectively.  To 

judge these magnitudes, recall that the cross-sectional standard deviation of cit is standardized to one.  

Thus, the typical stock changes its momentum characteristic by about one cross-sectional standard 

deviation per year.  In contrast, the two leverage measures L/A (0.28) and L/M (0.26), and also FutGr 

(0.27), DY (0.26), S/M (0.27) and especially Size (0.16) are much less volatile.   

The differences in characteristics volatility turn out to be quite important for the relative 

magnitudes of (predicted) rule-driven trading volume (τit) shown in the final column.  It is calculated 

by applying Eqs. (3) and (4) at the individual stock level, using the univariate estimates for Σmt and γt 

along with ∆cit.  These numbers are then averaged (using value-weights) across stocks and then across 

time.  Interestingly, momentum-related trading rules seem to be the most important generators of rule-

driven trading volume, with predicted annual turnover of 9.18% (std.err. 0.65%) and 7.32% (std.err. 

0.45%) per year for Ret12 and Mav12, respectively.  The volatility of these returns-based 

characteristics implies that it requires a lot of trading to maintain a momentum or a contrarian portfolio.  
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Conversely, Size, which scores high both on Σm and γ̂ , and thus seems to be one of the major sources 

of clustering among mutual funds, produces comparatively low τit of only 2.02% (std.err. 0.24%).  Size 

simply does not change enough over time to cause a lot of rule-driven trading, at least not in value-

weighted terms.  Other characteristics that appear to contribute substantially to rule-driven trading 

volume are the risk characteristics, especially Volat with 4.62% (std.err. 0.30%), long-run past returns 

Ret36 with 4.41% (std.err. 0.75) and also DY and FutGr.  It seems worth emphasizing at this point that 

τ it is a prediction, based only on the observed changes in characteristics for each stock and the location 

dispersion and location persistence parameters estimated from mutual fund holdings ( mtΣ̂  and tγ̂ ).  In 

other words, the trading volume numbers shown in Table 2 are an estimate of how much trade is 

needed to maintain the observed location dispersion and location persistence.  They are not a 

decomposition of actual trading volume or fitted to actual trading volume.   

 

3.5 Multidimensional calibration results 

Since many of the characteristics in Table 2 are highly correlated, the unidimensional results 

do not allow drawing conclusions about the overall volume of rule-driven trading.  In this section, I use 

the multidimensional version of the model to quantify the aggregate rule-driven trading volume.  Now 

the sample covariance matrices mtΣ̂ , ctΣ̂  and mtΩ̂  include the covariances of all 15 stock 

characteristics, and γ̂ t is the average of location persistence estimates at time t across all characteristics 

(i.e., those in the high-γ cluster).  Using these estimates along with stock-by-stock observations on ∆cit, 

Eq. (4) yields a prediction for rule-driven trading volume, τit, for each stock within each (overlapping) 

annual estimation interval.  The first row of Table 4 shows some descriptive statistics of the cross-

sectional distribution of τ it.  All statistics are computed with value-weighted observations, quarter by 

quarter, and are then averaged in time.  The time-series standard error is reported in parentheses.   



 26

As the table shows, the mean predicted rule-driven trading volume is about 17.5% per year.  

Note that this is considerably less than what one would get by simply adding up the univariate turnover 

predictions across different characteristics in Table 2.  This is because the distance measure in Eq. (4) 

properly accounts for the fact that many of these characteristics are strongly correlated.  For 

comparison, the second row shows the mean actual turnover for the same sample of NYSE and AMEX 

stocks.  It is defined as the number of shares traded in a given year, as reported on CRSP, divided by 

the number of shares outstanding, value-weighted across stocks.  This value-weighted mean turnover is 

equal to aggregate turnover, defined as the fraction of aggregate market equity that is traded in a given 

year.  Over the sample period 1984 to 2000, aggregate turnover amounts to 71.5%.  Compared with 

this number, the calibration results thus suggest that about 25% of aggregate trading volume is caused 

by rule-driven trading.  Considering that one would not expect trading rules to constitute the only 

Table 3 
Multidimensional calibration results and comparison with actual trading volume. Cross-
sectional distribution. 
 
Each quarter, I calculate mjt as the value-weighted average of characteristics within fund j’s portfolio, and I 
estimate value-weighted covariance (Σmt) of mjt between funds.  The covariance of characteristics (Σct) is 
estimated from each cross-section of cit.  mtΩ  is estimated from mtΣ̂  and ctΣ̂ as described in section 3.1. 
Location persistence (γt) is estimated first separately for each characteristic by running cross-sectional 2SLS 
regressions of mjt+1 on mjt and passive location drift, as described in Section 3.1.  These characteristic-specific 
estimates are then averaged in each quarter, yielding an estimate for γt.  Predicted rule-driven turnover (τit) is 
calculated for each stock in each quarter according to Eq. (4), using the estimates for Σmt, Ωmt, and γt, and the 
observed ∆cit over overlapping annual intervals.  Each quarter, I calculate value-weighted cross-sectional 
statistics of τit.  The table shows the time-series average of these cross-sectional statistics, with Newey-West 
autocorrelation-consistent standard errors in parentheses.  The sample period runs from the first quarter of 
1984 to the fourth quarter of 2000.  Only NYSE and AMEX stocks are used.  The second row shows the same 
cross-sectional statistics for total actual trading volume. 
      
  Mean Median Std.dev. 5th pct. 95th pct. 
      

Predicted Rule-Driven Turnover (τit) 0.175 0.167 0.069 0.076 0.301 
 (0.008) (0.008) (0.004) (0.005) (0.014) 
      

Actual NYSE/AMEX Turnover 0.715 0.587 0.492 0.283 1.561 
 (0.047) (0.038) (0.059) (0.021) (0.123) 
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reason for trade, this is a substantial amount.  Of course, the calibration rests on some strong 

assumptions.  Therefore, in the next section, I subject these results to a careful empirical test.  

The percentiles shown in the table reveal that rule-driven turnover tends to be less skewed than 

total turnover.  Evidently, there are some stocks in each period that have quite extreme actual turnover 

well in excess of 100 percent.  As a matter of principle, rule-driven turnover—at least if based on 

annual rebalancing—can never exceed 100%.  Hence, there is no chance that rule-driven trading could 

ever explain much of these large volume observations.  Rule-drive trading is more likely to explain a 

part of the “base level” of trading volume rather than instances of extremely active trading.  Unusually 

high information flow or trading frenzies are perhaps more likely to be the driving forces behind the 

more extreme trading volume observations. 

This point is also underscored by Figure 3, which shows a four-quarter moving average of 

aggregate NYSE/AMEX turnover (Panel A) and the time-series of aggregate rule-driven turnover 

(Panel B), calculated in the same way as in Table 3 over overlapping annual windows.  As can be seen 

in the figure, actual turnover exhibits more pronounced low frequency movements than rule-driven 

turnover does.  The two series are positively correlated (the correlation is not statistically significant 

after adjusting for autocorrelation, though), and both have their minimum around 1992, but actual 

turnover almost doubled in the post-1992 years, while rule-driven turnover only increased by about 

50% during the same period.  In absolute magnitudes, the differences in time-series variation are even 

bigger.  Hence, rule-driven trading cannot help much to explain the pronounced peaks in trading 

volume during the boom years before the crash in 1987, and during the bull market at the end of the 

1990s.  This mirrors the cross-sectional results in Table 3, where rule-driven trading volume cannot 

contribute much to explaining the highest actual trading volume observations.  

To some, the lack of a strong time trend in rule-driven turnover in Panel B may appear 

surprising.  Based on casual empiricism, one might have expected that the increased popularity of 

“investment styles” and the increased product differentiation and specialization in the institutional 

money management industry would have resulted in an increased volume of rule-driven trading in the  
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Figure 3 
Value-weighted actual NYSE/AMEX turnover and predicted rule-driven turnover, 1983-2000.  
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later part of the sample.  However, there are no clear time-trends in location dispersion among mutual 

funds.  Size and Beta are the exceptions.  With respect to Size, σm (the square root of the diagonal 

element of Σm corresponding to Size) has slowly and steadily increased from about 0.48 in 1984 to 0.58 

at the end of the period, indicating an increasing tendency of mutual funds to have a Size focus.  Of 

course, as the previous analysis showed, Size does not contribute much to rule-driven trading volume, 

because its volatility is so low.  For Beta the time-trend looks similar.  In fact, it is perhaps not so clear 

that heterogeneity among funds should have gone up much over time.  Trading rules in the form of 

value, growth, relative-strength (momentum) and contrarian investing, and technical analysis are by no 

means new ideas.  It is quite possible—and the data does not suggest otherwise—that such trading 

rules were prevalent in the earlier part of the sample, too. 

Even though time-variation in rule-driven trading volume is moderate, it would be interesting 

to know its source.  Time-variation can either be due to changing characteristics volatility, changing 

Σm, or due to variation in the fraction of fixed-rule traders (γt).  Panel C shows the time-series of 

predicted rule-driven trading volume when γt is held constant at its time-series mean.  Compared with 

Panel B, the series still shows a similar degree of volatility at higher frequencies, part of which may be 

estimation noise.  But it lacks some of the lower frequency movements.  Evidently, most of the lower 

frequency variation in rule-driven turnover comes from variation in tγ̂ .  There appear to be times 

when investors cling more strongly to their trading rules than in others.  As can be seen in Panel D, 

there is some persistent low frequency variation in tγ̂ .  Unfortunately, the persistence in these 

variables and in actual turnover also imply that it is difficult to draw statistically precise inference on 

the relationship between rule-driven and actual trading volume from these relatively short aggregate 

time-series.  For this reason, the empirical tests in the next section look at the cross-section of trading 

volume instead.   
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4. Relationship with Actual Trading Volume 

The calibration analysis above implicitly assumes that all investors exhibit approximately the 

same rule-trading behavior (in terms of location dispersion and location persistence) as mutual funds 

do.  Moreover, the model also assumes a lot of structure (e.g., normal distributions, equal Ωc across 

investors, etc.), which may or may not be appropriate.  To check whether its predictions are borne out 

in the data, this section explores the relationship of predicted rule-driven trading with actual 

empirically observed trading volume.  Everything else equal, stocks for which predicted rule-driven 

trading volume is higher should have higher actual trading volume.  Since the calibration of the model 

did not involve fitting free parameters to match actual trading volume, such tests are feasible.  The tests 

use panel regressions on NYSE/AMEX stocks.  The section concludes with some robustness checks. 

 

4.1 Identification and estimation 

Neglecting other influences on trading volume for a moment, the trading rules model would 

lead to a simple structural model: 

ititittitTurn ετβτββ +++= −112110  , (13) 

where Turnit is the turnover of stock i in period t, and τit is the predicted rule-driven trading volume (as 

a function of ∆cit).  I also include the one-year lag τit-1, because fixed-rule investors might trade only at 

recurring rebalancing points, e.g. quarterly or annual.  In this case, their trades may take place some 

time after characteristics have changed.  The trading rules model predicts that β11 + β12 = 1.  Of course, 

this model omits other variables that should also cause trading volume.  Since the omitted variables 

may be correlated with τit and τit-1, OLS estimation of Eq. (13) would not deliver consistent estimates 

of β11 and β12.  Furthermore, τit and τit-1 are endogenous:  Some of their variation is driven by price 

changes—that is, by individual stock return volatility—and volatility may be caused by the same latent 

variables that cause trading volume.  
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There is unlikely to be a perfect solution to these problems—partly because existing theory 

does not give much guidance on the cross-sectional determinants of volume and volatility.  

Nevertheless, the theory does suggest some variables that might be useful as controls and instruments.  

A broad spectrum of models [e.g., Copeland (1976), Kyle (1985), Glosten and Milgrom (1985), Wang 

(1994), He and Wang (1995), and also the dispersion in opinion models of Harris and Raviv (1993), 

Kandel and Pearson (1995), and Scheinkman and Xiong (2003)] imply that volume (Turnit) and the 

variance of price changes (Volatit) should be jointly driven by information flow (Iit) and/or liquidity 

shocks experienced by investors (Lit).  Andersen (1996), building on Tauchen and Pitts (1983) and 

Clark (1973), develops an empirical framework that incorporates both information and liquidity shock 

effects in a time-series setting.  Here, I apply these ideas to a cross-sectional setting and augment Eq. 

(13), which leads to the following structural model for volume and volatility: 

ititititittit LITurn 132112110 εββτβτββ +++++= −  (14) 

ititittit LIVolat 2210 εδδδ +++=  , (15) 

τit = g(Volatit) + ε3it (16) 

The latter equation captures the fact that changes in prices cause changes in characteristics, which 

cause rule-driven trading volume, but in nonlinear fashion, hence the function g(.).  For the following 

analysis, however, the nature of g(.) is not important.  While Iit and Lit are not observable, one may still 

be able to identify β11 and β12 in (14) by using Volatit to capture the effect of the unobservables.  

Solving Eq. (15) for Iit and plugging the result into Eq. (14) yields:  
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which can be rewritten as  

ititititit VolatTurn νατβτβα ++++= − 2112110  . (17) 

Consistent estimation of this equation requires instrumental variables: The disturbance νit, which is 

equal to the term in brackets in Eq. (16), is correlated with Volatit, because Volatit measures Iit with 
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error.  Furthermore, τit and τit-1 are then also correlated with νit through their dependence on Volatit and 

Volatit-1.  The instruments need to satisfy two requirements: First, they must be partially correlated with 

the endogenous variables τit , τit-1, and Volatit.  Second, they should be uncorrelated with ε2it and Lit to 

be uncorrelated with νit.  Given such instruments, the parameters β11 and β12 in Eq. (17) are identified 

and can be estimated with two-stage least squares (2SLS). 

My choice of instruments is motivated as follows.  The reason for the endogeneity problem 

with τit is that many of the characteristics that contribute to τit depend on price or price changes in some 

form, which opens the door for simultaneous effects of Iit, for example, on Turnit and τit.  To generate 

an instrument that is plausibly exogenous, I recalculate τit excluding all price-related variables (Ret12, 

Mav12, Ret36, S/M, L/M, DY, Beta, Volat, Size) and FutGr.  I denote this instrument τ*it, and its one-

year lag τ*it-1.  Next, to instrument Volatit, I draw on evidence in Pástor and Veronesi (2003) that 

uncertainty about profitability is stronger for no-dividend paying firms with negative earnings.  Hence, 

to the extent that higher uncertainty leads to higher information flow, dummy variables for above-zero 

earnings and dividends should be correlated with Iit.  These dummies are valid instruments for Volatit if 

their errors in measuring Iit are not correlated with the measurement error inherent in Volatit (i.e., Lit 

and ε2it).  There is no obvious reason why this condition should be violated.  

Problems could arise, though, if the true model deviates from the setup in Eqs. (14) to (16).  

There seem to be two main concerns here.  First, Volatit and Turnit might respond differently to private 

and public information.  In models with dispersion in beliefs, public information may cause trading, 

while in rational expectations models with common priors this is often not the case.  Hence, to take an 

extreme example, suppose that both public and private information cause price changes, but only 

private information generates trade.  In this case, an additional public information flow term would 

appear in νit in Eq. (17).  As characteristics changes and hence τ*it might be correlated with public 

information flow, this would invalidate the instruments.  Only if the rate of public information flow is 

proportional to the rate of private information flow, as assumed in Andersen (1996) in a time-series 
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setting, the public information term disappears from the disturbance and the instruments are valid.  In a 

time-series setting, this assumption seems innocuous. Yet, in a cross-sectional setting, the rate of public 

to private information flow might vary systematically across firms.  Unfortunately, existing theory does 

not provide much help on this point.  A test of the overidentifying restriction (there are four 

instruments for three endogenous variables) will provide some indication of the severity of this 

problem.  

The second issue is unobserved heterogeneity.  The level of trading volume may depend on 

other omitted exogenous variables that vary across firms, and which could be correlated with τit.  I 

address this point in two ways.  First, I include Sizeit (average of beginning and end of period log of 

market capitalization) and Priceit (average of beginning and end of period log of price) as control 

variables.  For example, trading volume of larger firms is more likely to be affected by index arbitrage 

and program trading.  The Priceit variable is motivated by the fact that trading tends to be thin for 

stocks with extremely low prices.  Second, since these variables might not capture all relevant sources 

of heterogeneity, I also run 2SLS regressions with industry-time effects.  It seems plausible that some 

of the unobserved heterogeneity could be in the form of inter-industry differences within each cross-

section.  

Turning to estimation and inference, it is important to take into account that turnover tends to 

be correlated across firms.  Lo and Wang (2000) and Cremers and Mei (2001) document a factor 

structure in turnover, and thus there is reason to believe that there is non-trivial cross-sectional 

correlation among the εit.  In this case, standard pooled panel estimators would overstate the statistical 

significance.  To address this problem, I implement both OLS and 2SLS with cross-sectional 

regressions, using the Fama-MacBeth (1973) method of obtaining standard errors.  The regressions are 

run quarterly with overlapping annual observation windows.  Specifically, in each cross-section t = 1, 

…, T, I estimate the regression Eq. (17).  This yields a time-series of T parameter estimate vectors tβ̂  

(for 2SLS, there is also a time-series of first-stage estimates).  Time-series means of the tβ̂  then 
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provide consistent estimates of the regression coefficients, and ]ˆ)Var[(1/ tT β , adjusted for 

autocorrelation as in Newey and West (1987), consistently estimates the covariance of their estimation 

errors.  With this approach, for both OLS and 2SLS, the estimation error, including the effect of cross-

sectional correlation, is translated into time-series variation of coefficient estimates.  The estimated 

coefficient error covariance matrices in first and second stage regressions can then be used to conduct 

inference with t-statistics and Wald tests.  Similarly, as I explain in more detail below, the 

overidentifying restriction can be tested by comparing the time-averaged test statistic to its expected 

value under the null hypothesis.   

 

4.2 Ordinary least squares (OLS) results 

For the sake of comparison with existing work on the cross-section of trading volume [e.g., Lo 

and Wang (2000)] and with the subsequent 2SLS results, I start by reporting the OLS results.  It is 

important to keep in mind, however, that the OLS parameter estimates merely show partial relations.  

They are not estimates of structural parameters.  Table 4 presents results for various specifications, 

with Turnit as the dependent variable and equally weighted observations.  To ease the interpretation of 

magnitudes, the control variables (Volat, Size, Price, etc.) are demeaned and standardized by their 

cross-sectional standard deviation in each quarter.  In model OLS.1, τit and its lag are the only 

explanatory variable and they receive large coefficient estimates of 1.85 (std.err. 0.22) and 0.88 

(std.err. 0.18), respectively.  The R2 is 10%.  Regarding the R2, it is important to note that it does not 

necessarily reveal much about the fraction of trading volume that is explained by rule-driven trading, 

because the magnitude of the R2 also depends on the amount of cross-sectional variation in τit..  For 

example, if τit did not vary at all across firms, the R2 in these regressions would be zero, even though τit 

could still account for a large fraction of the level of total trading volume.  Therefore, the key 

prediction of the calibrated model concerns the magnitude of the structural coefficients on τit and τit-1 

(their sum should be close to 1.0), not the R2.  The fact that the coefficients in OLS.1 are so large has to 
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do with the fact that τit and τit-1 are positively correlated with Volatit, which is strongly related to 

trading volume, as shown in a large literature surveyed in Karpoff (1987) and Lo and Wang (2000).  

Hence, not surprisingly, when Volatit is included among the regressors in model OLS.3, the coefficients 

on τit and τit-1 drop substantially to 1.12 (std.err. 0.07) and 0.35 (std.err. 0.11).  Compared with OLS.2, 

where Volatit is the only explanatory variable, the coefficient on Volatit however also drops by about a 

fifth, too.  This suggests that rule-driven trading may be one of the reasons why the widely documented 

volatility-volume relationship exists: Changes in prices lead to changes in characteristics, which in turn 

cause rule-bound traders to rebalance their portfolios.   

Table 4 
Relationship between predicted rule-driven trading volume and actual trading volume (turnover) 
in NYSE/AMEX stocks: OLS cross-sectional regressions. 
 
Dependent variable is the 12-month average of monthly turnover (number of shares traded/number of shares 
outstanding).  It is regressed on predicted rule-driven turnover (τit) and its one-year lag (τit-1).  Regressions are run 
quarterly, using overlapping annual windows, on all NYSE/AMEX stocks that have data on the 15 stock 
characteristics that are required for the computation of τit and τit-1.  In each cross-section, observations are equal-
weighted.  Coefficient estimates shown in the table are the time-series averages of the quarterly estimates. 
Standard errors of these time-series means are used as an estimator for the coefficient standard errors, as in Fama-
MacBeth (1973), adjusted for autocorrelation using the Newey-West method with 12 lags.  The standard errors are 
shown in parentheses.  The reported adj. R2 is the time-series average of the cross-sectional adj. R2, with 
corresponding standard error in parentheses.  The sample period runs from the first quarter of 1985 to the fourth 
quarter of 2000. 
                    

Model  τt  τt-1 Volatt
a Sizet

a Pricet
a |Ret12t|a Forecast 

Dispersiont
a   adj. R2   

          

OLS.1 1.85 0.88       0.10 
 (0.22) (0.18)       (0.02) 
          

OLS.2     0.28    0.16 
     (0.06)    (0.03) 
          

OLS.3 1.12 0.35   0.23    0.19 
 (0.07) (0.11)   (0.06)    (0.04) 
          

OLS.4 1.46 0.89 0.07 0.16 0.35    0.30 
 (0.08) (0.13) (0.01) (0.03) (0.07)    (0.01) 
          

OLS.5 1.83 1.23 0.13 0.01  0.11   0.19 
 (0.22) (0.20) (0.01) (0.01)  (0.01)   (0.02) 
          

OLS.6 1.27 0.81 0.04 0.19 0.46  0.04  0.33 
 (0.10) (0.10) (0.01) (0.03) (0.10)  (0.02)  (0.05) 
                    
          
a Variables are scaled by their cross-sectional standard deviation. 
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Model OLS.4 shows that including Sizeit and Priceit as control variables strengthens rather than 

weakens the effect of τit  and τit-1 with coefficient estimates of 1.46 (std.err. 0.08) and 0.89 (std.err. 

0.13).  The regressions show that Priceit and Volatit are associated with economically large cross-

sectional variations in turnover.  For example, the coefficient on Volatit suggests that a one-standard 

deviation difference in Volatit is associated with about 35% difference in annual turnover.  Broadly, 

these results on the control variable effects are consistent with earlier findings by Lo and Wang (2000).  

Model OLS.5 replaces Volatit with an alternative measure of volatility, |Ret12|, the absolute value of 

12-month contemporaneous returns.  As can be seen in the table, this volatility measure seems to be 

less strongly related to trading volume and the coefficients on τit  and τit-1 are much larger than in 

OLS.4.  Finally, the specification OLS.6 includes a 12-month average of the Diether, Malloy, and 

Scherbina (2002) analyst forecast dispersion measure.  The idea here is that this analyst forecast 

dispersion might proxy for differences in opinion among investors, which is a potential source of 

trading activity.  The results show that it is indeed positively related to trading activity, but with an 

economically small coefficient estimate of 0.04 (std.err. 0.02).  Compared with OLS.4, the coefficients 

estimates on τit  and τit-1 drop slightly, but with 1.27 (std.err. 0.10) and 0.81 (std.err. 0.10) they are still 

large.  

Overall, the OLS results show that predicted rule-driven trading volume is strongly positively 

related to actual trading volume.  Of course, the OLS results could be driven partly by simultaneity. 

The 2SLS results in the next section throw some more light on this issue.  

 

4.3 Two-stage least squares (2SLS) results 

Table 5 reports the results when a model similar to OLS.4 is estimated by 2SLS.  Volatit, τit  

and τit-1 are treated as endogenous.  Sizeit and Priceit are assumed to be (econometrically) exogenous in 

the sense that they are uncorrelated with the disturbance in Eq. (17).  The first stage estimates shown in 

the table reveal that the endogenous variables are strongly related to the instruments.  In particular, 
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Volatit tends to be low for firms that have above-zero profits and dividends, consistent with the findings 

in Pástor and Veronesi (2003).  Not surprisingly, there is also a strong relationship between τit and τit-1, 

and their equivalents with non-price characteristics, τ∗it and τ∗it-1.  The fact that the coefficient 

estimates in the first stage are all highly significant (untabulated Wald tests also reject the null of 

jointly zero coefficients at p = 0.000 for all first stage equations) shows that the estimation is unlikely 

to suffer from a weak relationship between instruments and endogenous variables of the kind discussed 

in Staiger and Stock (1997).  Based on these instruments, the table also shows p-values from a 

Table 5 
Relationship between predicted rule-driven trading volume and actual trading volume 
(turnover) in NYSE/AMEX stocks: 2SLS cross-sectional regressions. 
 
This table shows the result of 2SLS regressions, using a model similar to (OLS.4) in Table 4, but with Volatit, τit, 
and τit-1 treated as endogenous, and instrumented with dummy variables for non-zero dividends (Divit) and 
Earnings (Profitit), as well as τ∗it and τ∗it-1, which are calculated in the same way as τit, but excluding all price-
related variables.  First and second stage regressions are run quarterly using overlapping annual windows. 
Observations are equal-weighted.  First and second stage coefficient estimates shown in the table are the time-
series averages of the quarterly regression coefficient estimates.  Standard errors of these time-series means are 
used as an estimator for the coefficient standard errors, as in Fama-MacBeth (1973), adjusted for autocorrelation 
using the Newey-West method with 12 lags.  The standard errors are shown in parentheses.  The sample period 
runs from the first quarter of 1985 to the fourth quarter of 2000.  
                 

Model  τt  τt-1 Volatt
a Sizet

a Pricet
a Profitt Divt  τ∗t  τ∗t-1 

          

First stage estimates:         
          

Volatt    0.16 -0.47 -0.21 -0.57 0.29 0.63 
    (0.03) (0.05) (0.04) (0.04) (0.24) (1.00) 
          

 τ t    -0.01 -0.01 -0.01 -0.03 0.57 0.10 
    (0.00) (0.00) (0.00) (0.00) (0.03) (0.01) 
          

 τt-1    -0.01 -0.01 0.00 -0.03 0.13 0.58 
    (0.00) (0.00) (0.00) (0.00) (0.01) (0.03) 
          

    Hausman test (exogeneity):  p = 0.000   
          

Second stage estimates :        
          

2SLS 0.55 0.56 0.70 0.02 0.33     
 (0.11) (0.21) (0.12) (0.01) (0.04)     
          

    Hausman test (overidentification): p = 0.117  
                    

          
a Variables are scaled by their cross-sectional standard deviation. 
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Hausman (1978) type test for endogeneity.15  The hypothesis of exogeneity is strongly rejected (p = 

0.000), reinforcing the concern that OLS may be biased. 

As might be expected then, the second-stage estimates of the coefficient on τit and τit-1 turn out 

to be much smaller than in the OLS case (i.e., compared with OLS.4).  They are now 0.55 (std.err. 

0.11) and 0.56 (std.err. 0.21).  Hence, OLS might indeed have captured some reverse causality going 

from trading volume to τit and τit-1, resulting in upward biased coefficient estimates.  Moreover, the 

coefficient estimate on volatility (0.70) is now twice as high as it is under OLS.  This indicates that 

some of the effect captured by τit and τit-1 under OLS might in fact be an information flow effect, which 

is correctly attributed by 2SLS to the information flow indicator Volatit.  It is also apparent that the use 

of 2SLS did not produce a large loss of statistical precision compared with OLS—unlike in many 2SLS 

applications.  This is further testimony to the fact that the endogenous variables are strongly related to 

the instruments.   

The important message from this table is that the magnitude of the coefficients fits well with 

the prediction of the model.  In fact, untabulated tests show that one cannot reject the hypothesis that 

the sum of the coefficients on τit and τit-1 is equal to 1.0—the magnitude predicted by the rule-trading 

model.  However, one should not take this test too seriously.  Given the highly stylized nature of the 

model, and the fact that the calibration uses data that covers only a specific subset of the investor 

population, one would not really expect that it gets the magnitude exactly right.  A coefficient of, say, 

0.7 or 1.3 would certainly also be in the ballpark of estimates that one might consider economically 

consistent with the trading rules model.  Overall, the result that one percent higher predicted rule-

driven turnover leads to approximately one percent higher actual turnover corroborates the calibration 

                                                 
15 Specifically, each quarter, I store the residuals from the first stage regressions, and include them in a regression 
of Turnit on the exogenous variables (Sizeit, Priceit) and the potentially endogenous variables (τit, τit-1, Volatit).  
Under the null hypothesis of exogeneity of τit, τit-1, and Volatit, the coefficient on these residuals should be zero 
[see, e.g., Wooldridge (2001, p. 118)].  I compute a Wald statistic in each quarter, and draw inference—
analogously to the Fama-MacBeth method—by comparing the time-series means of the test statistic to its 
expected value under the null. 
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results.  In particular, it supports my earlier estimate that 25% of observed NYSE/AMEX trading 

volume is caused by trading rules.  

Since there are four instruments and only three endogenous variables, the model is 

overidentified.  By testing the overidentifying restriction, one can then test whether the instruments are 

valid, i.e. whether they remove the endogeneity problem.  The test statistic is NR2 from the regression 

of the second stage disturbance estimate on all the instruments (including all exogenous variables), 

where N is the number of observations [see, e.g., Wooldridge (2001, p. 122)].  With one 

overidentifying restriction, NR2 ~ χ2(1).  Here, I calculate 2R ttN  for each cross-section t.  The null 

hypothesis is then given by 2R ttN  = 1, the mean of the χ2(1) distribution.  As before, I adjust the 

standard error of the time-series mean for autocorrelation.  A one-tailed test yields a p-value of 0.117, 

indicating that the overidentification restriction cannot be rejected at conventional significance levels.  

This provides some reassurance that the instruments are valid.16 

One remaining issue is unobserved heterogeneity.  There might be omitted variables that are 

correlated with τit and τit-1.  Consistent with the cross-sectional regression framework, I allow for 

unobserved industry-time effects by demeaning dependent and explanatory variables, including the 

instruments, within each quarter and industry groups.  This is equivalent to running cross-sectional 

regressions with industry dummies.  I use 48 four-digit SIC industry groups, defined as in Fama and 

French (1997).  

                                                 
16 In fact, there is there is reason to believe that this test overrejects in this setting.  The asymptotic χ2(1) 
distribution of the test statistic only holds when residuals have zero cross-sectional correlation.  But as I have 
argued before, turnover residuals are likely to be correlated across firms due to the factor structure in turnover.  
Hoxby and Paserman (1998) present Monte Carlo evidence that the above test tends to overreject severely when 
residuals are clustered.   
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Table 6 presents the results.  As can be seen, little has changed compared with Table 5.  In fact, 

the coefficient estimates on τit and τit-1 are higher when industry-time effects are included.  They are 

now 0.78 (std.err. 0.09) and 0.67 (std.err. 0.16).  Here, the overidentification restriction is not rejected 

either (p = 0.121).  In summary, controlling for unobserved heterogeneity at the industry level does not 

change the result that the sum of the estimated coefficients is close to one, as predicted by the trading 

rules model.  If anything, the model seems to underestimate the magnitudes of rule-driven trading 

volume.  

Table 6 
Relationship between predicted rule-driven trading volume and total trading volume 
(turnover) in NYSE/AMEX stocks: 2SLS cross-sectional regressions with industry-time fixed 
effects. 
 
This table shows 2SLS regressions similar to those in Table 5, but with industry-time fixed effects included in 
the regression specification.  First and second stage regressions are run quarterly using overlapping annual 
windows.  Observations are equal-weighted.  First and second stage regressions are run quarterly using 
overlapping annual windows.  Observations are equal-weighted.  First and second stage coefficient estimates 
shown in the table are the time-series averages of the quarterly regression coefficient estimates.  Standard 
errors of these time-series means are used as an estimator for the coefficient standard errors, as in Fama-
MacBeth (1973), adjusted for autocorrelation using the Newey-West method with 12 lags.  The standard errors 
are shown in parentheses.  The sample period runs from the first quarter of 1985 to the fourth quarter of 2000.
                 

Model  τt  τt-1 Volatt
a Sizet

a Pricet
a Profitt Divt  τ∗t  τ∗t-1 

          

First stage estimates:        
          

Volatt    0.15 -0.47 -0.20 -0.47 0.24 0.64 
    (0.03) (0.04) (0.04) (0.04) (0.23) (1.00) 
          

 τ t    -0.01 -0.01 -0.01 -0.02 0.56 0.09 
    (0.00) (0.00) (0.00) (0.00) (0.02) (0.01) 
          

 τt-1    -0.01 -0.01 0.00 -0.02 0.13 0.57 
    (0.00) (0.00) (0.00) (0.00) (0.01) (0.03) 
          

    Hausman test (exogeneity):  p = 0.000   
          

Second stage estimates :        
          

2SLS 0.78 0.67 0.64 0.04 0.31     
 (0.09) (0.16) (0.12) (0.02) (0.05)     
          

    Hausman test (overidentification): p = 0.121   
                    

          
a Variables are scaled by their cross-sectional standard deviation. 



 41

4.4 Robustness checks 

To check the robustness of the results, I have also investigated several variations on the 

methodology.  For example, Table 7 shows OLS and second-stage 2SLS results (as in Table 5) when 

the sample is broken into two subperiods.  As can be seen in the table, the OLS coefficient estimates on 

τit and τit-1 are much higher in the second subperiod.  In contrast, the sum of the 2SLS coefficients on τit 

and τit-1 does not vary much across the two periods (1.04 vs. 1.18).  The overidentifying restrictions are 

not rejected (untabulated p-values are p = 0.606 in the first and p = 0.055 in the second subperiod).  

Table 7 
Relationship between predicted style-driven trading volume and total trading volume 
(turnover) in NYSE/AMEX stocks: OLS and 2SLS subperiod results 
 
This table shows results for OLS and 2SLS second-stage regressions similar to those in Table 4 and 5, but with 
the sample broken into two subperiods.  Regressions are run quarterly using overlapping annual windows. 
Observations are equal-weighted.  Coefficient estimates shown in the table are the time-series averages of the 
quarterly regression coefficient estimates. Standard errors of these time-series means are used as an estimator 
for the coefficient standard errors, as in Fama-MacBeth (1973), adjusted for autocorrelation using the Newey-
West method with 12 lags.  The reported adj. R2 is the time-series average of the cross-sectional adj. R2, with 
corresponding standard error in parentheses. 
                

Period  τt  τ t-1 Sizet Pricet Volatt adj. R2        

        

Panel A: OLS       
        

1985 - 1992 1.41 0.52    0.07 
  (0.16) (0.14)    (0.02) 
        

  1.36 0.69 0.09 0.10 0.21 0.20 
  (0.11) (0.12) (0.02) (0.01) (0.02) (0.02) 
        

1993 - 2000 2.30 1.24    0.14 
  (0.14) (0.08)    (0.01) 
        

  1.56 1.10 0.06 0.23 0.49 0.39 
  (0.07) (0.13) (0.00) (0.01) (0.07) (0.01) 
        

Panel B: 2SLS       
        

1985 - 1992 0.49 0.55 0.03 0.25 0.47  
  (0.08) (0.36) (0.01) (0.02) (0.02)  
        

1993 - 2000 0.61 0.57 0.00 0.42 0.93  
  (0.19) (0.19) (0.01) (0.02) (0.13)  

4               

        
a Variables are scaled by their cross-sectional standard deviation. 
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The difference in OLS and 2SLS results appears to be due to stronger association of volatility and 

volume in the second subperiod.  Since 2SLS attributes more of the cross-sectional variation in Turnit 

to Volatit than OLS does, this might explain the results.  

The similarity of the 2SLS results across subperiods may appear surprising.  Given that mutual 

funds hold a much larger fraction of the total market in the second subperiod (based on the portfolio 

holdings data, their share of total market equity of the NYSE/AMEX stocks my the sample has 

increased from about 4% in 1985 to about 17% at the end of 2000), one might have expected the 

coefficient estimates to differ more.  If the prevalence of trading rules among mutual funds and other 

investors were different, the coefficient estimates on τit and τit-1 would have to change as mutual funds’ 

share of the market and total trading volume goes up over time.  Therefore, a conclusion that one could 

draw from these results is that the distribution of trading rules among other investor groups is similar to 

what we observe for mutual funds.  In this case, calibration based only on mutual funds data would not 

introduce an upward or downward bias.   

Finally, one might wonder whether the inclusion of lagged volatility would impact the results.  

In most theoretical models, the relationship between volume and volatility is contemporaneous, and 

thus controlling for contemporaneous volatility, as in Tables 4 to 7, should be sufficient—lagged 

volatility should not have a causal effect after controlling for contemporaneous volatility.  However, 

there are exceptions.  For example, in He and Wang (1995) privately informed investors trade in the 

absence of new information to unwind the positions that they entered upon receiving news in previous 

periods.  In this case, volume can lag information flow.  Untabulated tests show, however, that the 

inclusion of lagged volatility does not change the basic results.  Under OLS, a specification similar to 

OLS.4, but with one-year lagged volatility included, yields coefficient estimates for τt and τt-1 of 1.27 

(std.err. 0.06) and 0.56 (std.err. 0.07), respectively, close to the estimates in Table 4 (1.46 and 0.89).  

Under 2SLS, using one-year lags of the Div and Profit dummies as additional instruments, the 

coefficient estimates τt and τt-1 are 0.38 (std.err. 0.16) and 0.32 (std.err. 0.19).  These are lower than the 
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estimates in Table 5 (0.55 and 0.56), but still broadly in line with the model predictions.  One cannot 

reject the hypothesis that the sum of the coefficients is equal to one at conventional significance levels.  

As a caveat, though, there seems to be a problem with instrument validity in these regressions with 

lagged volatility: the overidentification restrictions are strongly rejected.   

 

5. Summary and Discussion 

The main point of this paper is easily summarized: Investors’ fixation on trading rules causes a 

substantial part of trading volume in equity markets.  Many investors tend to follow trading rules that 

are based on observable stock characteristics.  When stock characteristics change over time, these 

investors rebalance their portfolios to keep them consistent with their trading rules.  My estimates 

suggest that about 25% of NYSE/AMEX volume can be traced to rule-driven rebalancing.  This 

estimate might be conservative, because trading rules may not be limited to the relatively slow moving 

stock characteristics that my analysis is based on.  Technical or quantitative trading rules operating at 

higher frequency could give rise to additional trading volume.17   

In the introduction, I suggested product differentiation in delegated portfolio management and 

the use of simple characteristics-based forecasting heuristics as two potential explanations for the 

prevalence of trading rules.  My findings provide some hints that the second point is likely to play a 

substantial role.  First, size and value/growth characteristics—the attributes most frequently used to 

differentiate among equity fund managers, e.g. by advisory firms like Morningstar—contribute only 

moderately to rule-driven trading volume.  Size, for example, is just not volatile enough to generate 

much trade.  Returns-based trading rules such as momentum, which are not directly related to popular 

style categories, seem to be more significant generators of volume.  Second, my regression results 

suggest that rule-driven trading does not seem to be limited to mutual funds.  The product 

                                                 
17 Interestingly, Huddart, Lang, and Yetman (2003) find that trading volume increases when a stock breaks out of 
its previous 52-week trading range.  This provides a hint that higher frequency technical trading rules could be at 
work.  



 44

differentiation story may apply to institutional investors, but it does not explain why individuals, for 

example, would use trading rules.   

By estimating the volume of trade caused by trading rules, this paper takes a step towards a 

better understanding of these trading motives, but it would be interesting to extend the analysis and 

explore in more detail the origins of trading rules and their evolution over time.  The emergence and 

evolution of trading strategies has been studied in simulated stock markets with artificial agents [see, 

e.g., LeBaron (2000)], and one could investigate some of these issues empirically in real financial 

markets.  For instance, one might hypothesize that, if trading rules are indeed a manifestation of 

investors’ forecasting models, their prevalence should depend on their past performance.  To give a 

simple example, after a period of strong returns on momentum strategies, momentum investing might 

become more popular relative to contrarian strategies, and vice versa.  In terms of the model developed 

in this paper, one could study how the distribution of investors’ portfolio locations depends on past 

returns of stocks with different characteristics.  To the extent that such predictable shifts in investors 

trading rules exist, this could also help in assessing the trading volume that is caused by rule-

switching—as opposed to the trades studied in this paper, which are aimed at maintaining a portfolio 

consistent with a fixed rule.   
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Appendix 

 

A. Market clearing 

The aggregate demand density function can be obtained by integrating the within-portfolio 

distributions f(c|m) across all investors, i.e. as the convolution of f(c|m) and fm(m): 

( ) ( ) ( ) mmfmcfcf m
D

c d|∫
∞

∞−

=  (A.1) 

Market clearing requires that fc
D(c) = fc(c).  Since the convolution of two Gaussians is also Gaussian,  

 fc
D(c) is multivariate normal.  Therefore, fc

D(c) = fc(c) iff means and variances match.  The mean of 

demand is  

 ED[c] = Em[E[c|m]] = E[m],  (A.2) 

and it must equal E[c] = 0, the mean of supply.  A standard variance decomposition implies that 

VarD[c] = Varm[E[c|m]] + Em[Var[c|m]] = Σm + Ωc,  (A.3) 

which must equal Var[c] = Σc.  Taken together this leads to the result stated in the main text. 

 

B. Parameters of f(m, c) 

Since fm(m) and f(c|m) are multivariate normal distributions, it follows that the joint 

distribution f(m, c) = f(c|m)fm(m) is multivariate normal.  Using the fact that E[m] = 0 and E[c] = 0, the 

rules for conditional expectations under normality [see, e.g., Anderson (2003, ch. 2)] imply that  

mmcmc m
1],[Cov]|E[ −Σ= . (A.4) 

By definition, m = E[c|m] and so, using (A.4), we get 

 mmc Σ=],[Cov . (A.5) 

Hence, the joint distribution is given by  
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The conditional distributions are  

c|m ~ N[m, Ωc] with Ωc = Σc - Σm,  (A.7) 

as defined earlier, and  

m|c ~ ] ,[N 1
mcm c ΩΣΣ − , with mcmmm ΣΣΣ−Σ=Ω −1 . (A.8) 

 

C. Proof of the proposition 

To evaluate the integral in the definition, Eq. (2), I use the fact that  

( ) ( ) ( ) mcmfmcmfcmf
Sm

tt
Sm

t d|21d|| 11 ∫∫
∈

++
∈

−=−  . (A.9) 

This relationship holds, because f(m|ct) and f(m|ct+1) are symmetric, and identical except for their 

means.  The integral on the RHS is taken over S, that is, over all values of m for which (see Definition 

on p. 11) 

 ( ) ( )tt cmfcmf || 1 <+  . (A.10) 

Since f(m | ct) and f(m | ct+1) are both multivariate normal PDFs with covariance 1−Ωm , (A.10) is 

equivalent to 

 ( ) ( ) ( ) ( )]|[]|E[]|E[]|[E 1
1

1
1 tmttmt cmmcmmcmmcmm −Ω′−−<−Ω′−− −

+
−

+   . (A.11) 

Without loss of generality, one can redefine the means of the two distributions as E[m | ct] = -∆m and 

E[m | ct+1] = 0, where ∆m ≡  E[m | ct+1] - E[m | ct].  With these redefined means, simplifying yields 

mmmm mm ∆Ω∆−<∆Ω −− 112  (A.12) 

Eq. (A.12) defines a halfspace below a hyperplane.  Since the random vector m is multivariate normal 

conditional on c, integration of f(m | ct+1) over this halfspace is equivalent to integrating the univariate 

normal PDF f(x | ct+1), with the scalar mmx m ∆Ω≡ −12 , over mmx m ∆Ω∆−< −1 .  Standardizing x by its 

standard deviation conditional on ct+1, which equals mm m ∆Ω∆ −12 , then leads to integration of a 

standard normal PDF, and hence the result that 
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( ) ( )∫
∈

−
+ ∆Ω∆−Φ=
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where ( ).Φ  denotes the univariate standard normal CDF.  Finally, rules on conditional expectations 

under joint normality imply that cm cm ∆ΣΣ=∆ −1 .  Plugged into (A.13), using the result in (A.9) and 

applying the definition of rule-driven trading volume then yields the expression stated in the 

proposition.  
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